
www.manaraa.com

Computing the Intersection-Depth of PolyhedraDavid Dobkin� John Hershbergery David KirkpatrickzSubhash SurixAbstractGiven two intersecting polyhedra P , Q and a direction d, �nd the smallesttranslation of Q along d that renders the interiors of P and Q disjoint. Thesame problem can also be posed without specifying the direction, in which casethe minimum translation over all directions is sought. These are fundamentalproblems that arise in robotics and computer vision. We develop techniquesfor implicitly building and searching convolutions and apply them to derivee�cient algorithms for these problems.1 IntroductionThe computation of spatial relationships among geometric objects is a fundamentalproblem in such areas as robotics, computer-aided design, VLSI layout, and computergraphics. In a dynamic environment where objects are mobile, intersection or prox-imity among objects has obvious applications. Consider, for instance, the problem ofcollision detection in robot motion planning. The Euclidean distance is a commonlyused measure in these areas. Numerous e�cient algorithms are known for comput-ing the minimum distance between two polyhedra in two and three dimensions (see[10, 12, 14]). Whenever two objects intersect, this distance measure is zero. Thus,it fails to provide any information about the extent of penetration. The notion ofnegative distance has been proposed by Buckley and Leifer [6] and Cameron and Cul-ley [7] to rectify this discrepancy. We follow Keerthi and Sridharan [25] and de�nethe following measure of negative distance.�Department of Computer Science, Princeton University, NJ 08544, U.S.A., and Bell Communi-cations Research, Morristown, NJ 07960, U.S.A. The work of this author was partially supportedby National Science Foundation Grant CCR90-02352.yDEC Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, U.S.A.zDepartment of Computer Science, University of British Columbia, Vancouver, BC V6T 1W5,Canada. The work of this author was partially supported by grant A3583 from the Natural Sciencesand Engineering Research Council of Canada.xBell Communications Research, 445 South Street, Morristown, NJ 07960, U.S.A.1



www.manaraa.com

Given two intersecting polyhedra P and Q and a direction d, let �d(P;Q) denotethe minimum distance by which Q must be translated along d to make the interiorsof P and Q disjoint. We call �d(P;Q) the intersection-depth between P and Q indirection d. The minimum intersection-depth between P and Q, denoted �(P;Q), isde�ned as the minimum of �d(P;Q) over all directions d. The de�nition of �(P;Q)agrees with the measure proposed by Cameron and Culley [7].The �xed-direction intersection-depth problem can be reduced to a separationproblem: move one of the polyhedra su�ciently far in direction d to ensure thatthe two polyhedra are disjoint, and then �nd their directional separation. Theintersection-depth can be inferred by subtracting the separation from the initial dis-placement. This gives an alternative way to consider and attack the problem; a safeestimate of the initial displacement can often be made e�ciently, for example, by�nding the extremal vertices of the two polytopes in directions �d.The problem of computing the intersection-depth between two intersecting objectsis addressed by Cameron and Culley [7]; however, the complexity of their algorithmis not analyzed. Keerthi and Sridharan [25] consider the problem for two convexpolygons. Given two intersecting convex polygons P and Q of n and m vertices,respectively, they propose an O(log n logm) time algorithm for computing the direc-tional intersection-depth, �d(P;Q). For the minimum intersection-depth, �(P;Q),they achieve O(n+m) time. In this paper, we derive the following improvements andextensions of these results.Given two intersecting convex polygons P and Q, where jP j = n and jQj = m,we can determine �d(P;Q) for any direction d in optimal time O(log n + logm). Inaddition, after linear-time preprocessing, we can in O(log(n+m)) time compute theminimum intersection-depth, �(P;Q), for any placement of Q.Next, we relax the convexity assumption on one of the polygons. If P is a sim-ple nonconvex polygon and Q is a convex polygon, we can build a data structurein O(n log2(n + m) + m) time such that directional intersection-depth queries andminimum intersection-depth queries can both be answered for any placement of Qin time O((n +m) log(n + m)). The data structure can be extended to support di-rectional intersection-depth queries in O(n2=3+�) time. The data structure requiresO(n +m) space. The query time can be reduced to O(pn log2 n) by increasing thepreprocessing time and space.We then consider the directional intersection-depth problem for two convex poly-hedra in three dimensions. For suitably preprocessed polyhedra P and Q, we candetermine �d(P;Q) in time O(log n logm), for any direction d. The representationassumed for the polyhedra is the hierarchical representation, originally proposed byDobkin and Kirkpatrick [11, 12, 13], which can be built in linear time.The unifying idea in all our algorithms is implicitly searching the convolution oftwo polytopes. It is well known that if two polytopes P and Q intersect, then thedi�erence of their reference vectors lies in their convolution [21]. In fact, the problem2



www.manaraa.com

of computing the intersection-depth reduces to calculating the distance between theboundary of a convolution and a point inside it. In all interesting cases, however, anexplicit construction of the convolution can be rather expensive; in two dimensions,the convolution can have quadratic size if one of the polygons is nonconvex, andin three dimensions, the size can be quadratic even for two convex polyhedra. Wedevelop methods for building and searching the convolutions implicitly, and applythem to solve the intersection-depth problems in time sublinear in the size of theconvolution.2 Minkowski SumGiven two sets A and B of vectors, their Minkowski sum or convolution is the setA�B = fa+ b j a 2 A and b 2 Bg:In all our applications, the ambient space is two or three-dimensional Euclideanspace, the sets are polyhedra, and the elements are points taken as vectors. Wewill need to distinguish between various placements of the same shape (or solid) inthe space, and so each polyhedron is endowed with a reference point. Since only thetranslates of a polyhedron are of interest, the placement of a polyhedron is completelyspeci�ed by the coordinates of its reference point. The polyhedron P translated bya vector x is denoted P x. Symbols without the superscript denote the \default"placement of the associated polyhedron, where the reference point is at the origin.Finally, the polyhedron P re
ected through the origin is denoted (�P ):(�P ) = f�a : a 2 Pg:The following lemma establishes a connection between the intersection and theconvolution.Lemma 2.1 ([21]) Let P and Q be two polyhedra, and let x and y be vectors. ThenP x \Qy 6= ; if and only if y � x 2 P � (�Q).Let P and Q be two intersecting polyhedra. Without loss of generality, assumethat the reference point of P coincides with the origin of our coordinate system, andthat the reference point of Q is given by the vector q. Their initial placements satisfyP \Qq 6= ;, which by the preceding lemma implies that q 2 P�(�Q). A displacementof Q in direction d is given by Qq+td, for some t � 0. Thus, the problem of computing�d(P;Qq) is equivalent to �nding the minimum t such that P \ Qq+td = ;. ByLemma 2.1, this is equivalent to �nding the minimum t such thatq + td =2 P � (�Q): (1)3



www.manaraa.com

Since q+ td is the parametric equation of a ray, whose origin is q and direction isd, the minimum t for which (1) holds is determined by the (�rst) intersection of theray q + td with the boundary of P � (�Q). Thus �nding the intersection-depth ina �xed direction reduces to the problem of intersecting a ray with a Minkowski-sumpolyhedron.The problem of �nding �(P;Q), the smallest translation in any direction thatwould separate P and Q, is equivalent to �nding the minimum distance between qand the boundary of P � (�Q):�(P;Qq) = min(t � 0 j 9d with jdj = 1 and q + td =2 P � (�Q)): (2)3 Convex PolygonsIt is well known that the Minkowski sum of two convex polyhedra is a convex poly-hedron [18]. In two dimensions, if P and Q are convex polygons of n and m vertices,respectively, then P�Q is a convex polygon of n+m vertices; an exception occurs if Pand Q have parallel edges, in which case the convolved polygon has fewer than n+mvertices. In the plane, P �Q has a particularly simple characterization: its edges arethose of P and Q, merged in slope order [20]. This fact allows one to compute P �Qin linear time.Theorem 3.1 ([20]) Given two convex polygons P and Q, with n and m vertices,respectively, we can compute their convolution P �Q in time O(n+m).The directional intersection-depth between P and Q can be computed by implicitlybuilding that portion of P�(�Q) that intersects the ray from q in direction d. Guibasand Stol� [21] use a similar method to detect whether two given convex polygonsintersect. Observe that testing whether P intersects Qq is equivalent to checking ifq 2 P � (�Q). Guibas and Stol� achieve O(log n) time by determining the positionof those edges of the convolution that intersect the horizontal line through q. Thecontainment of q in the convolution can be determined by testing against these edges.The method of Guibas and Stol� can be easily modi�ed to determine, inO(log n) time,the point of intersection between a ray originating from an interior point q and theconvolution P � (�Q).We can also perform a binary search directly in the object space, rather thanthe convolution (i.e., the con�guration space) to compute �d(P;Q), using a methodsimilar to Chazelle and Dobkin's method for detecting the intersection between twoconvex polygons [9]. The procedure repeatedly selects the median edges on the twopolygonal chains and then, based on some local computations involving the medianedges, discards half of one of the chains. For further details, we refer the reader to [9].Next, to solve the problem of �nding the minimum intersection-depth over alldirections, we �rst compute the convolution P � (�Q), in O(n) time; we assume4



www.manaraa.com

that each of the polygons has at most n vertices. The minimum depth is found bydetermining the point closest to q on the boundary of P � (�Q). The latter task canbe accomplished easily in linear time by checking all the edges of the convolution.Once P � (�Q) is computed, we can also answer the following query e�ciently:given Qy, �nd the minimum translation needed in any direction to separate Q fromP . To handle these queries, we compute the medial axis of the polygon P �(�Q) andbuild a point-location structure for it, using O(n) time altogether [2, 15, 26]. (Themedial axis of a polygon P is the locus of all points in P that are equidistant fromat least two points on the boundary of P . The medial axis of a convex polygon ofn vertices can be computed in O(n) time [2].) Given a query placement Qy, we can�nd the closest point to y on the boundary of P � (�Q) in O(log n) time by pointlocation in the medial-axis diagram. This establishes the following theorem.Theorem 3.2 Let P and Q be two convex polygons, with a total of n vertices. AfterO(n) time preprocessing, given a placement Qy, we can compute �(P;Qy) in timeO(log n).In the following sections, we extend these ideas to solve similar problems fornon-convex polygons and three-dimensional convex polyhedra. The main di�cultyin these generalizations is that the Minkowski sum of non-convex polygons or 3Dpolyhedra may have quadratic complexity, which makes their explicit constructiontoo costly. Instead, we develop methods for implicitly constructing and searchingthese structures.4 One Convex and One Nonconvex PolygonLet P be a simple nonconvex polygon of n vertices and let Q be a convex polygonof m vertices. Given a placement of Q, we want to compute the intersection-depth,either in a �xed direction or the minimum over all directions. The Minkowski sumof P and Q is again a polygon; however, in contrast to the convex case, P � Q isin general multiply connected, and may have 
(nm) vertices. Therefore, an explicitconstruction of the convolution may be too expensive. Our main result in this sectionis a method for constructing and searching an implicit representation of P �Q. Therepresentation can be constructed in O(n log2(n+m) +m) time, stored in O(n+m)space, and searched e�ciently for the depth queries. At the top-level, our methodconsists of the following steps.Construct ConvolutionStep 1. Triangulate P . Let T1; T2; : : : ; Ts be the triangles in this triangulation (s =n� 2). 5



www.manaraa.com

C

BA
i

h

g f
e

d

c
ba

i

h

g
C

f
e

d

B

c
ba

AFigure 1: A convolved triangleStep 2. Compute an implicit representation of the convolutions Ri = Ti� (�Q), fori = 1; 2; : : : ; s.Step 3. Compute an implicit representation of the boundary of R = [Ri.4.1 Details of the ConstructionWe �x a Cartesian coordinate system in the plane and, without loss of generality,assume that the origin lies in Q; we take the origin as the reference point of Q.Step 1 is easily accomplished in O(n log n) time, using any of the well-knowntriangulation algorithms [17, 23]; in fact the time complexity can be reduced to O(n)using a recent algorithm of Chazelle [8]. Pick a reference point ri for each of thetriangles Ti; for instance, we may pick the vertex closest to the origin.Step 2 computes an implicit representation of the convolutions of these triangleswith the convex polygon (�Q). The key to this step is the observation that theconvolution of two convex polygons has a particularly simple form, which in the caseof a triangle Ti and a convex polygon Q can be determined implicitly in O(logm)time. Recall that if A and B are two convex polygons, then the boundary of A�Bconsists of edges of A and B merged in slope order [20]. To compute Ti � (�Q),therefore, we need only to locate the slopes of each of the three edges of Ti amongthe slopes of the edges of (�Q), which takes three binary searches and O(logm)time. To represent Ri = Ti � (�Q) implicitly, we just record the three places in thearray storing (�Q) where the edges of Ti are inserted. We call the convolution Ri aconvolved triangle; see Figure 1 for an illustration.Implicit Representation of the Convolved TrianglesIn our description of the convolution so far we have concentrated on the \form"and ignored the \placement" issue. A uniform way to resolve this discrepancy is toconvolve (�Q) with a canonical copy of Ti, placed at the origin, and then translatethe result by the vector ri. More precisely, let T oi = 4Oab be the canonical copy of6



www.manaraa.com

Ti, where O is the origin and a and b are vectors denoting the remaining two verticesof the triangle. Let q1; q2; : : : ; qm be the ordered list of vertices of (�Q). Supposethat the slope of Oa lies between the slopes of qi�1qi and qiqi+1. Similarly, suppose ab(resp. Ob) lies between qj�1qj and qjqj+1 (resp. qk�1qk and qkqk+1). Then the orderedlist of vertices forming the boundary of T oi � (�Q) is given byqi�1; qi; (qi+a); (qi+1+a); : : : ; (qj+a); (qj+b); (qj+1+b); : : : ; (qk+b); qk; qk+1; : : : ; qi�1:Finally, to obtain the convolution Ti � (�Q), we add the vector ri to each vertexof T oi � (�Q). It is clear that the indices i; j; k and vectors a; b and ri completely,though implicitly, encode a representation of Ti� (�Q). This is precisely the implicitrepresentation of Ri stored by our algorithm.Next, we discuss the details of Step 3, in which we compute the boundary of theunion of these convolved triangles.Union of Convolved TrianglesWe want to computeR = [si=1Ri, where each of the Ri is a convex polygon withm+3vertices. An explicit description of R will require 
(nm) space in the worst case. Wetherefore need to exploit the fact that each Ri is (implicitly) representable as a six-sided �gure: three straight lines and three \arcs" of a convex polygon. This alone stilldoes not su�ce since, in general, even the boundary of the union of s triangles canhave quadratic size. Fortunately, a result of Kedem et al. [24] shows that a collectionof convolved triangles is \well-behaved"; we use that result to construct a linear-spaceimplicit representation of the boundary of R. Our approach is similar in spirit to thatof Hershberger and Guibas [22]. We use the following two facts proved in Kedem etal. [24].Fact 4.1 ([24], p. 66) Let A1 and A2 be two convex polygons with disjoint interiors,and let B be another convex polygon. Then the boundaries of A1 � B and A2 � Bintersect in at most two points.Fact 4.2 ([24], p. 61) Let Ai, i = 1; 2; : : : ; s, be a collection of convex polygonswith disjoint interiors, and let B be another convex set. Then the boundary of R =[si=1(Ai �B) has at most 6s� 12 points of local nonconvexity.(Given a set S, a point p 2 S is called a point of local nonconvexity if each opendisk centered on p contains two points x; y 2 S such that the segments px; py 2 Sbut the segment xy is not contained in S.)7



www.manaraa.com

A Sweep-line AlgorithmWe use these facts to get an upper bound on the running time of a sweep-line algorithmfor computing the boundary of R. The algorithm we use is due to Ottman, Widmeyerand Wood [28], which in turn is based on a technique of Bentley and Ottman [5]for counting and reporting the intersections in a collection of planar line segments.These algorithms run in O((n+t) log(n+t)) time, where n and t, respectively, are thenumbers of line segments and segment intersections. (Ottman, Widmeyer and Woodextend the basic plane sweep algorithm of Bentley and Ottman to perform booleanmask operations. Computing the boundary of the union of two sets of polygons,each set free of self-intersections, is the boolean mask operation we use. Readersunfamiliar with the paradigm of plane sweep are encouraged to refer to Preparataand Shamos [29].)In our case, the collection consists of straight-line segments as well as implicitlyrepresented arcs of a convex polygon. The algorithm of Ottman et al. works just ase�ciently in this setting too, with one minor modi�cation. In addition to intersectingtwo line segments, the algorithm must also be able to intersect two convex polygonalarcs. Intersecting two arbitrary convex arcs can be di�cult in general; however, thereare lucky breaks that we are able to exploit. First, by Fact 4.1, any two arcs intersectin at most two points. Second, we intersect the arcs in the order the sweep lineencounters them. Thus, when our algorithm tries to compute the intersections of twoarcs, their leftmost points lie on the sweep line. Since each of the arcs is given asan ordered list of vertices in an array, we can intersect them in time O(logm) by abinary search. (The details of this search are quite straightforward and can easily beworked out by the reader.) The worst-case running time of the sweep line algorithmis still O((n+ t) log(n+ t)) since the overhead cost per intersection point is O(log n).The following is a high-level description of our algorithm.Algorithm to Compute R = [Ri.1. Divide the set of input convolved triangles into two halves: R1, : : : , Rbs=2c andRbs=2c+1, : : : , Rs.2. Recursively compute the union of the two halves, U = Sbs=2ci=1 Ri, and V =Ssi=bs=2c+1Ri.3. Merge the two contours U and V using the (modi�ed) Ottman-Widmeyer-Woodalgorithm.Fact 4.2 implies that the total number of intersections t is at most 6s� 12, whichis O(n), and hence the merge phase of our algorithm (step 3) takes O(n log(n+m)).The entire algorithm takes O(n log2(n+m) +m) time.8



www.manaraa.com

The boundary of R has a total of O(n) vertices, and each pair of adjacent verticesis joined either by a straight line segment (corresponding to an edge of P ) or animplicitly described convex arc (corresponding to some portion of the boundary of(�Q)). We can store this boundary in O(n +m) space.4.2 Computing the Intersection-Depth using RHaving computed an implicit representation of R = [Ri, we now discuss how to useit to solve the intersection-depth problem.In the case of directional intersection-depth, we are given a placement of Q, sayQq, and want to compute �d(P;Qq). Recalling the relation (1), this distance is equalto the distance between q and its closest point on the boundary of R in direction d.Equivalently, we need to �nd the �rst intersection of R with the ray from q in directiond. We intersect the ray with each of O(n) bounding edges and arcs of R, and choosethe point closest to q. We can intersect the ray with a line segment in O(1) time,and �nd its �rst intersection with a convex arc of m vertices in time O(logm). Thus,the directional intersection-depth can be determined from an implicit representationof R in O(n logm) time.If the minimum intersection-depth over all directions, namely �(P;Qq), is desired,we need to do a little more work. We start by computing the minimum distance fromq to the explicitly stored boundary of R; that is, we ignore the convex arcs on theboundary and �nd the minimum distance to the remaining edges and vertices of R.If this distance is �, let D be the disk of radius � centered on q. Let V (q;�) � R bethe set of edges and vertices visible from q whose distance from q is no more than �;alternatively, V (q;�) is the intersection of the visibility polygon of q with the diskD.Lemma 4.3 V (q;�) has size O(n + m), and it can be computed from the implicitrepresentation of R in time O(n log(n +m) +m).Proof: We give an algorithm that computes V (q;�) in time O(n log(n + m) +m)using O(n +m) space, which proves the lemma. We start by computing an implicitrepresentation of the visibility polygon V of q with respect to the boundary of R.This takes O(n log(n +m)) time and O(n +m) space using a variant of a standardvisibility polygon algorithm [3, 30], which we now describe. On each arc of Q in theimplicit representation of R, there are at most two points x such that the ray *qx istangent to the arc. We �nd these points in O(n logm) time altogether. If we cut theboundary of R at these tangent points and at all the explicitly represented vertices,we get a collection of O(n) explicit segments and implicit arcs, no two intersecting.A ray from q intersects a segment or an arc in the collection in at most one point.We use an angular-sweep method to �nd the visibility polygon of q. We �rst �ndthe intersections of all arcs and segments with the vertical ray extending up from9



www.manaraa.com

q. The closest intersection to q belongs to V . Now we rotate the ray through 360�while maintaining the segment or arc closest to q as the minimum element of apriority queue. Because the segments and arcs are disjoint, the closest segment orarc changes only when the sweeping ray passes over an explicit vertex or a tangentpoint. The result of the sweep is a partition of the directions around q into O(n)angular ranges such that within each range, exactly one segment or arc is visiblefrom q. The algorithm takes O(n log(n + m)) time altogether for tangent-�nding,intersection-�nding, and priority queue operations.Once we have found V implicitly, we must re�ne it to get V (q;�). We compute� in O(n) time. We wish to �nd any implicit arcs that cross D, but do not wantto examine all the O(nm) edges of V . Suppose that some implicit convex chain c isvisible from q in an angular range (�; �). Because c bulges away from q, any edgeof c that intersects the interior of D must have its normal in the range (�; �), thatis, must have the same slope as a tangent to D between � and �. Thus to �nd anyportion of c inside D, we �nd the extreme points of c in directions � and �, thenexamine the edges between to see if any intersects D. This takes O(logm) time, plusa cost proportional to the number of edges examined. There is no overlap betweenthe edges of Q examined in any two angular ranges, and so computing V (q;�) takesO(n log(n+m) +m) time and O(n+m) space.Once V (q;�) is known, the minimum distance between q and V (q;�) can becomputed in O(n + m) time. By equation (2), this distance equals the minimumintersection-depth �(P;Qq). We summarize the results of this section:Theorem 4.4 Let P be a simple nonconvex polygon and Q a convex polygon, wherejP j = n and jQj = m. In O(n log2(n + m) + m) time, we can build a linear-spacedata structure that can answer the following queries: (1) given a placement Qq anda direction d, determine the directional intersection-depth �d(P;Qq), and (2) given aplacement Qq, determine the minimum intersection-depth �(P;Qq). The query timesare O(n logm) and O(n log(n+m) +m), respectively.Remark. Theorem 4.4 also holds for a polygon P with holes. The construction isexactly the same: we triangulate P , compute convolved triangles, and then �nd theboundary of their union. Since we only require that the triangles in the triangulationof P have pairwise disjoint interiors, the time and space bounds are the same whetherthe polygon has holes or not.4.3 Query Answering in Sublinear TimeIn this section, we show how to preprocess R so that �xed-direction intersection-depthqueries can be answered in sublinear time, for an arbitrary placement of Q. Finding�d(P;Qq) is a ray-shooting problem: we want to �nd the �rst point where the ray10



www.manaraa.com

q+td hits the boundary ofR. After some preprocessing, we can apply the ray-shootingtechniques of Guibas, Overmars and Sharir [19] and Agarwal [1]. The preprocessingtakes O(n log n+m) time and O(n+m) space; queries take O(n2=3+� + logm) time,for � > 0 and arbitrarily small.For any implicit arc c, we know that the segment connecting the arc endpointslies inside R (it lies inside the placement of Q that produced c). Furthermore, thesegments for any two distinct arcs are disjoint. Each arc and its associated segmentform an \ear" of the region R (see Figure 2). These ears play a critical rôle in ray-shooting: any ray that enters an ear by crossing its segment will intersect the ear'sarc before hitting any other boundary point of R. The point of intersection can befound in O(logm) time.
Figure 2: Ears produced by convolving a polygon with a diskTo prepareR for ray-shooting, we cut o� all its ears. This leaves a polygonal regionbounded by O(n) line segments. We preprocess this region for ray-shooting [1, 19],which takes O(n log n) time and O(n) space. We also preprocess the ears for pointlocation; the preprocessing takes O(n log(n+m)), after which a point location querycan be answered in O(log(n+m)) time [15].At query time, we try to locate q in the ears. If q lies in an ear, we check whetherq+ td hits the arc or the segment of the ear. If it hits the arc, we are done. If it hitsthe segment, we proceed as if q lay outside the ear at the intersection of the ray andthe ear's segment. In this case, or if q lies outside all ears, we �nd the �rst explicitsegment or ear segment that the ray hits, which takes O(n2=3+�) time. If the ray hitsan ear segment, we �nd the intersection of the ray with the ear's arc in O(logm)additional time. If we are willing to spend O(n3=2 log5 n) time for preprocessing andO(n log3 n) storage space, then the query time can be reduced to O(pn log2 n) [1].This solves the directional intersection-depth problem.11



www.manaraa.com

Theorem 4.5 Let P be a simple polygon and let Q be a convex polygon with a totalof n vertices. In O(n log2 n) time we can build an O(n) space data structure that cancompute �d(P;Qq), for an arbitrary direction d and an arbitrary placement of Q, intime O(n2=3+�), where � is an arbitrarily small but positive constant. The query timecan be reduced to O(pn log2 n) at the expense of O(n3=2 log5 n) preprocessing time andO(n log3 n) space.5 Convex Polyhedra in Three Dimensions5.1 Representation of PolytopesLet P and Q be two convex polyhedra with a total of n vertices. We show thatif P and Q are suitably preprocessed, then their directional intersection-depth canbe determined in O(log2 n) time. The representation of each polyhedron consists ofan inner polyhedral hierarchy and an outer polyhedral hierarchy. These hierarchicalrepresentations were introduced by Dobkin and Kirkpatrick [11, 12, 13], who usedthem for determining the separation of two convex polyhedra. To describe these datastructures, consider a polytope P with vertex set V (P ).1 A sequence of polytopesP1; P2; : : : ; Pk is called an inner polyhedral hierarchy of P if, for 1 � i < k,(i) P1 = P , and Pk is a simplex,(ii) Pi+1 � Pi and V (Pi+1) � V (Pi),(iii) V (Pi) n V (Pi+1) forms an independent set in Pi.Thus, an inner hierarchy is a sequence of increasingly smaller polyhedral approx-imations of P , where each approximation is contained in its predecessor.The outer polyhedral hierarchy is similar, except at each iteration we remove anindependent set of faces. In particular, let H(P ) be the set of planes bounding thefaces of P . Then the outer hierarchy of P is a sequence of polytopes P1; P2; : : : ; Pksuch that(i) P1 = P , and Pk is a simplex,(ii) Pi+1 � Pi and H(Pi+1) � H(Pi),(iii) H(Pi) nH(Pi+1) bounds an independent set of faces in Pi.The degree of an inner polyhedral hierarchy is the maximumdegree, over all i, of avertex in V (Pi)nV (Pi+1). The degree of an outer polyhedral hierarchy is analogously1We limit our discussion to bounded polytopes, although all our results hold for unboundedpolyhedra as well, at the expense of some minor technical complications.12



www.manaraa.com

de�ned, with faces in place of vertices. The following fact is based on the propertythat the facial graph of a convex polytope is a planar graph, and planar graphs admita large independent set of small degree.Fact 5.1 ([12]) There is an inner (resp. outer) polyhedral hierarchy of P with heightO(log jP j), size O(jP j), and degree O(1). Furthermore, given a standard representa-tion of the facial graph of P (cyclic orderings of edges around the vertices and thefaces), one can construct these hierarchies in linear time.In our discussion, we assume that each polyhedron is represented by its twinpolyhedral hierarchies satisfying properties stated in Fact 5.1. In particular, a convexpolytope P is represented by its inner polyhedral hierarchy P1; P2; : : : ; Pk, where eachPi is represented by an outer polyhedral hierarchy. We endow each hierarchy withsome additional data to facilitate searching, as follows.1. In an inner hierarchy, for each face F of Pi+1 that is not a face of Pi, we storea pointer to the unique vertex v of Pi whose removal created F .2. In an outer hierarchy, for each vertex v of Pi+1 that is not a vertex of Pi, westore a pointer to the unique face F of Pi whose removal created v.Using the hierarchical representation of a polytope, we can answer various ex-tremal queries involving points, lines or planes in logarithmic time. These queries arelater used by our intersection-depth algorithm. The reader may refer to the papersof Dobkin and Kirkpatrick [11, 13] or the book by Mehlhorn [27] for proofs of thefollowing lemmas.Lemma 5.2 Given a directed line l, we can �nd its �rst intersection with Pi, for any1 � i � k, in O(log n) time.Lemma 5.3 Suppose l is a line translating from in�nity in direction d. We can �ndthe �rst point of contact between l and Pi, for any 1 � i � k, in O(log n) time.Lemma 5.4 Suppose H is a plane translating from in�nity in direction d. We can�nd the �rst point of contact between H and Pi, for any 1 � i � k, in time O(log n).5.2 Computing the Intersection-DepthWe begin with the observation that if A is a convex polytope of constant complexity,then the intersection-depth �d(A;P ) can be computed in time O(log n). This followsbecause the intersection-depth �d(x; P ) for each element (vertex, edge or face) x 2 Acan be computed in time O(log n) using Lemmas 5.2, 5.3, and 5.4. We therefore havethe following corollary of the results of the previous subsection.13



www.manaraa.com

Corollary 5.5 Let A be a convex polytope of bounded complexity and let P be aconvex polytope of n vertices, given by its twin hierarchical representation. Then forany direction d, we can compute the depth of collision �d(A;P ) in time O(log n).We now describe our algorithm for computing the �xed-direction intersection-depth between P and Q. For ease of description, let us assume that the inner hierar-chies of both P and Q have k levels, with k > 1.Algorithm Compute-Depth-3DInitialization. Compute the intersection between the simplices Pk and Qk. If Pk \Qk = ;, �nd a separating plane Hk and go to Phase 1.Otherwise (i.e., Pk \ Qk 6= ;), compute �d(Pk; Qk); translate Qk by �d(Pk; Qk)along direction d so that Pk and Qk are in contact; �nd a plane Hk that passesthrough the common tangency of Pk and Qk and separates their interiors; andgo to Phase 2.Phase 1. (This phase maintains the invariant that the polytopes Pi and Qi are non-intersecting and we know a witness plane Hi such that Pi � H+i and Qi � H�i .)(1A) Compute the polytopes P 0i�1 = Pi�1 \H�i and Q0i�1 = Qi�1 \H+i .(1B) Determine whether the following intersections are nonempty: Pi�1\Q0i�1and P 0i�1 \Qi�1. If both intersections are empty, go to Step 1C; otherwisego to Step 1D.(1C) Find a plane Hi�1 such that Pi�1 � H+i�1 and Qi�1 � H�i�1. If i > 2,decrement i by 1 and go to Step 1A; otherwise, output \�d(P;Q) = 0" andstop.(1D) Compute �d(Pi�1; Qi�1) = max n�d(P 0i�1; Qi�1); �d(Pi�1; Q0i�1)o.Translate Qi�1 by �d(Pi�1; Qi�1). Find a planeHi�1 such that Pi�1 � H+i�1and Qi�1 � H�i�1. If i > 2, decrement i by 1 and go to Phase 2; otherwise,output �d(P1; Q1) and stop.Phase 2. (This phase maintains the invariant that the polytopes Pi and Qi are tan-gent to each other and we know a plane Hi such that Pi � H+i and Qi � H�i .)(2A) Compute the polytopes P 0i�1 = Pi�1 \H�i and Q0i�1 = Qi�1 \H+i .(2B) Compute ��d(Pi�1; Qi�1) = max n�d(P 0i�1; Qi�1); �d(Pi�1; Q0i�1)o.14



www.manaraa.com

(2C) Translate Qi�1 by ��d(Pi�1; Qi�1). Update�d(Pi�1; Qi�1) = �d(Pi; Qi) + ��d(Pi�1; Qi�1):Find a plane Hi�1 satisfying Pi�1 � H+i�1 and Qi�1 � H�i�1.If i > 2, decrement i by 1 and go to Step 2A; otherwise, output �d(P1; Q1)and stop.Theorem 5.6 Let P and Q be two convex polyhedra, with n and m vertices, respec-tively, each given by its hierarchical representation. For any direction d, the algo-rithm described above computes the directional intersection-depth �d(P;Q) in timeO(log n logm).Proof: We �rst establish the correctness of the algorithm. The algorithm ensuresthat i � 2 each time step 1A or step 2A is executed, so Pi�1 and Qi�1 are well de�ned.Phase 1 �nishes when Pi \ Qi 6= ;, for some i, 1 � i � k. One easily veri�es that ifPi \ Qi = ;, then Pi�1 \Qi�1 6= ; if and only if one of the two pairs of polytopes inStep 1B is found to intersect. If neither of the pairs intersects, then one can also �nda plane Hi�1 that separates Pi�1 from Qi�1. (There are several ways to �nd such aseparating plane. One possibility is to use the perpendicular bisector of the closestpair of Pi�1 and Qi�1.) This proves the correctness of Phase 1.In Phase 2, we maintain the invariant that Pi and Qi are in contact, and a planeHiseparating their interiors is known. Suppose that we enter an iteration of this phasewith Pi and Qi. It is easy to see that only the polytopes P 0i�1 and Q0i�1 are of inter-est for determining whether Pi�1 and Qi�1 intersect. Furthermore, ��d(Pi�1; Qi�1)correctly re
ects the amount by which Qi�1 must be translated to make its interiordisjoint from Pi�1. We �nd a plane Hi�1, which can be determined easily using thecontact point of the two polytopes, and start the next iteration. The invariant ismaintained and correctness of Phase 2 has been established.Finally, we show that each iteration of Phase 1 or Phase 2 can be completed inO(log n) time. The basic step of computing the polytopes P 0i�1 and Q0i�1 in Steps 1Aand 2A takes O(log n) time, as follows. By the convexity of Pi�1, at most one of itsvertices lies in H�. If there is a vertex v 2 V (Pi�1) lying in H�, then v also forms the�rst point of contact between Pi�1 and a plane moving parallel to Hi from in�nity. ByLemma 5.4, we can �nd v, and thus P 0i�1, in time O(log n). The remaining steps takeO(log n) time by Corollary 5.5, since both P 0i�1 and Q0i�1 have bounded complexity.(The logarithmic time bound per step also su�ces for maintaining the closest pair(and hence the separating plane in Phase 1) of Pi and Qi.) This completes the proofof the theorem. 15



www.manaraa.com

6 Extensions, Related Problems and ConclusionsThe intersection-depth is a reasonable measure of negative distance between intersect-ing objects. In many realistic situations, however, some additional factors might comeinto play. Practical constraints might require that all translations be along a �xed setof directions. This restriction simpli�es the query version of the intersection-depthproblem. Given a non-convex polygon P and a convex polygon Q, for each directiond, we perform an (implicit) trapezoidal decomposition of the convolution-space R,and preprocess the resulting subdivision for point location. Given a placement of Qqand direction d, we locate q in the subdivision of R corresponding to d and compute�d(P;Qy) by intersecting the ray q + td with the sides of the trapezoid containing q.The procedure takes O(log n) time.In many robotic situations, one may prefer a complete separation of the two poly-gons. Given two intersecting polygons P and Q and a direction d, translating Q by�d(P;Q) ensures that P and Q no longer intersect; however, Q may still be stuckin one of the \pockets" of P and hence cannot be moved arbitrarily far. By thecomplete separation of P and Q in direction d we mean the smallest translation thatmoves Q to a position from where it can be translated arbitrarily far along d withoutintersecting P . In terms of the convolution it requires �nding a point in the in�niteface of the complement of P � (�Q). This problem also appears to be easier thancomputing �d and �. We maintain an implicit representation of only the outermostboundary of R = P � (�Q). After linear-time preprocessing, the complete separationin a �xed direction can be computed in O(log n) time by performing a ray-shootingquery in a simple polygon.If P and Q are both non-convex, then we can �nd their complete separationin a given direction in linear time. We �rst translate Q su�ciently far along thegiven direction to ensure that it is disjoint from P ; this can be accomplished bydetermining the extreme vertices of P and Q in the given direction. Next we computethe \horizontal" visibility pro�le of Q with respect to P and vice versa (by choosingthe �xed direction to be the horizontal direction); the horizontal visibility pro�lecomputes for each vertex q 2 Q the edge of P that is hit by the horizontal ray issuingfrom q. The horizontal separation can be inferred from the visibility pro�le, and bysubtracting it from the initial displacement we arrive at the complete separation. Theprocedure runs in linear time since we can compute the horizontal visibility pro�le inO(n) time using a standard visibility-polygon algorithm [16]. (The key observationhere is that since P and Q are separated by a vertical line, it su�ces to consider thehorizontal visibility pro�le of only the left and right envelopes of P and Q; the verticesnot on the envelopes don't matter. To compute the visibility pro�le, we merge the twoenvelopes, which takes linear time. Computing the envelopes also takes linear time,since an envelope of a polygon is the same as its (external) visibility polygon fromthe point x = 1.) In contrast, we know of no o(n2) time algorithm for determining16



www.manaraa.com

the �xed-direction intersection-depth of two non-convex polygons.Finally, the minimum intersection-depth between two three-dimensional convexpolyhedra P and Qq can be computed in O(n2) time by computing their convolutionexplicitly and then �nding the boundary point closest to q.Our work suggests several open problems. Can the �xed-direction intersection-depth of two non-convex polygons be computed in substantially better than O(n2)time? How fast can the minimum intersection-depth be computed for two nonconvexpolygons? An O(n4) time bound can be obtained by explicitly computing the con-volution of the two polygons. (The convolution of two n-vertex polygons can have
(n4) size in the worst case [4], and so a sub-quartic algorithm must avoid build-ing the entire convolution.) Can some nontrivial lower bounds be proved for theseproblems?For two convex polyhedra P and Q in three dimensions, we gave an O(log2 n)time procedure for determining the directional depth of intersection. Can the timebound be improved to O(log n)? We can compute the minimum intersection-depthof two convex polyhedra by computing their convolution explicitly in O(n2) time. Isit possible to do substantially better? Extensions involving nonconvex polyhedra arealso worth investigating.References[1] P. Agarwal. Ray shooting and other applications of spanning trees with lowstabbing number. Proc. of 5th ACM Symposium on Computational Geometry,315{325, 1989.[2] A. Aggarwal, L. Guibas, J. Saxe, and P. Shor. A linear time algorithm for com-puting the Voronoi diagram of a convex polygon. Discrete and ComputationalGeometry, 4:591{604, 1989.[3] T. Asano. An e�cient algorithm for �nding the visibility polygons for a polygonalregion with holes. Transactions of IECE of Japan, E-68:557{559, 1985.[4] B. S. Baker, S. F. Fortune and S. R. Mahaney. Polygon containment undertranslation. Journal of Algorithms, 532{548, 1986.[5] J. Bentley and T. A. Ottman. Algorithms for reporting and counting geometricintersections, IEEE Transactions on Computers, C-28:643{647, 1979.[6] C. E. Buckley and L. J. Leifer. A proximity metric for continuum path planning.Proc. 9th International Joint Conference on Arti�cial Intelligence, 1096{1102,1985. 17



www.manaraa.com

[7] S. A. Cameron and R. K. Culley. Determining the minimum translation distancebetween two convex polyhedra. Proc. IEEE International Conference on Roboticsand Automation, 591{596, 1986.[8] B. Chazelle. E�cient polygon triangulation. Proc. of IEEE Symp. on Founda-tions of Computer Science, 220{230, 1990.[9] B. Chazelle and D. Dobkin. Intersection of convex objects in two and threedimensions. J. of ACM, 34:1{27, 1987.[10] F. Chin and C. A. Wang. Optimal algorithms for the intersection and the mini-mum distance problems between planar polygons. IEEE Transactions on Com-puters, C-32:1203{1207, 1983.[11] D. Dobkin and D. Kirkpatrick. Fast detection of polyhedral intersections. Proc.of ICALP '82, 154{165, 1982. Lecture Notes in Computer Science 140.[12] D. Dobkin and D. Kirkpatrick. A linear algorithm for determining the separationof convex polyhedra. J. of Algorithms, 6:381{392, 1985.[13] D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessedpolyhedra|a uni�ed approach. Proc. of ICALP '90, 400{413, 1990. LectureNotes in Computer Science 443.[14] H. Edelsbrunner. Computing the extreme distances between two convex poly-gons. J. of Algorithms, 6:213{224, 1985.[15] H. Edelsbrunner, L. Guibas, and J. Stol�. Optimal point location in a monotonesubdivision. SIAM Journal on Computing, 15:317{340, 1986.[16] H. El Gindy and D. Avis. A linear algorithm for computing the visibility polygonfrom a point. J. of Algorithms, 2:186{197, 1981.[17] M. Garey, D. S. Johnson, F. P. Preparata and R. E. Tarjan. Triangulating asimple polygon. Information Processing Letters, 7:175{179, 1978.[18] B. Gr�unbaum. Convex Polytopes. John Wiley and Sons, Ltd. 1967.[19] L. Guibas, M. Overmars, and M. Sharir. Intersecting line segments, ray shoot-ing, and other applications of geometric partitioning techniques. In Proc. ofthe First Scandinavian Workshop on Algorithm Theory, pages 64{73. Springer-Verlag, 1988. Lecture Notes in Computer Science 318.[20] L. Guibas, L. Ramshaw and J. Stol�. A kinetic framework for computationalgeometry. Proc. 24th Foundations of Computer Science, 100{111, Nov. 1983.18



www.manaraa.com

[21] L. J. Guibas and J. Stol�. Ruler, compass, and computer: The design andanalysis of geometric algorithms. Research Report 37, DEC Systems ResearchCenter, 1989. Also appeared in Theoretical Foundations of Computer Graphicsand CAD, Springer-Verlag.[22] J. Hershberger and L. Guibas. An O(n2) shortest path algorithm for a non-rotating convex body. Journal of Algorithms, 9:18{46, 1988.[23] S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. Lecture Notesin Computer Science, 158, 207{218, 1983.[24] K. Kedem, R. Livne, J. Pach and M. Sharir. On the union of Jordan regionsand collision-free translational motion amidst polygonal obstacles. Discrete andComputational Geometry, 1:59{71, 1986.[25] S. S. Keerthi and K. Sridharan. E�cient algorithms for computing two measuresof depth of collision between convex polygons. Technical Report, Department ofComputer Science and Automation, IIS, Banglore, India, 1989.[26] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Com-puting, 12:28{35, 1983.[27] K. Mehlhorn. Multi-dimensional Searching and Computational Geometry,EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1984.[28] T. A. Ottman, P. Widmeyer and D. Wood. A fast algorithm for Boolean mask op-erations. Inst. f. Angewandte Mathematik und Formale Beschreibungsverfahren,D-7500 Karlsruhe, Report no. 112, 1982.[29] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.Springer-Verlag, 1985.[30] S. Suri and J. O'Rourke. Worst-case optimal algorithms for constructing visibilitypolygons with holes. Proc. of 2nd ACM Symposium on Computational Geometry,14{23, 1986.
19


